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Abstract—As mmWave has a wide range of applications, it
has drawn a significant amount of attention in recent years.
It has already been introduced in the next generation wireless
communication system. In practice, it shows some shortcomings
and most of these are eliminated by introducing beamforming
which utilizes the spatial diversity enabled by Massive MIMO.
Still, there are a few challenges in designing an efficient system
for highly mobile users and making sure proper coverage and
reliability. In this research, a machine learning-based coordinated
beamforming technique has been explored that supports highly
mobile applications in mmWave systems with massive antenna
arrays. The optimization of the deep learning model itself
can increase the system performance as well as reduce the
computational time complexity. The purpose of this work was
to optimize the deep learning model and recommend proper
initialization method to maximize the system performance. We
found that for Xavier normal initialization algorithm the effective
achievable rate is the highest for the least amount of data.

Index Terms—MIMO, Beamforming, Initialization, mmWave
,

I. INTRODUCTION

Within the last few years, millimeter wave (mmWave)
communication has gained a lot of attention. Next generation
wireless systems have already adopted mmWave technology
to make sure high data speeds provided by its vast accessible
bandwidth. The shortcomings of mmWave communication
system are mitigated with technology like beamforming which
utilizes spatial diversity enabled by Massive MIMO. But there
are a few challenges when designing a highly mobile mmWave
system. Firstly, due to the high mobility of the user and
dense deployment there need to be frequent handover between
base stations otherwise it might endanger the reliability of
connection and result in poor user experience, specially for
vehicular communication. This can also result in latency and
jitter which is not acceptable. Secondly, for large antenna
arrays, constructing adequate beamforming vectors with stan-
dard methods needs a considerable training overhead with
traditional algorithms which poses a question if mmWave
systems are suitable for highly mobile users.Some prior work
has already been done to answer this question with help from
machine learning and coordinated beamforming, combining
them to form a solution. Coordinated beamforming uses a cen-
tral hub to connect several base stations which simultaneously
serves a user to increase reliability and counteract against
ill-conditioned channels and deep learning based algorithms

construct proper beamforming vectors to reduce the system’s
training overhead and complexity. The optimization of the
deep learning model itself can increase the system perfor-
mance as well as reduce the computational time complexity.
In this research work, this aspect of deep learning based
coordinated beamforming system is explored and thoroughly
analyzed.

II. LITERATURE REVIEW

Some prior work explored various aspects of mmWave
systems like signal outage and coverage. Maamari et al. [1]
studied the base station collaboration in the downlink of dense
mmWave heterogeneous network to reduce signal outage and
combat blocking. Coverage probabilities were calculated for
a typical user, taking into account base station directionality,
obstruction, interference, and different fading distributions.
They concluded coverage with coordinated beamforming is
far superior than beamforming, especially in dense mmWave
networks.

In an urban micro cell open square scenario in downtown
Brooklyn, New York, on the NYU campus, extensive mea-
surement was done in a proper practical scenario. Ten random
receiver locations at the pedestrian level (1.4 meters) and ten
random transmitter locations at lamppost level (4.0 meters)
produced 36 unique transmitter-receiver (TX-RX) combina-
tions for the measurements [2].

The authors discovered that one to five base stations serving
a single RX location improve coverage significantly when
compared to all possible beamformed RX antenna pointing
angles. Several research tried to integrate deep learning al-
gorithms with beamforming. In a paper by Guo et al. [3]
past channel state information (CSI) was used to create a
machine learning prediction model with LSTM to efficiently
forecast the future channel. The authors demonstrated that the
suggested LSTM can properly forecast the vehicle user’s chan-
nel and achieve a sufficient transmission rate while requiring
less pilot overhead than a standard beam training technique.
Wang et al. [4] explored how to construct a compressive
beam alignment in mmWave vehicle systems using deep
learning. This particular research leveraged the sparsity of the
mmWave channel to develop a convolutional neural network.
In a similar research work, Alkhateeb et al. [5], a coordinated
beamforming system was developed, in which a deep learning
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model learned how to predict beamforming vectors from the
receiver of distributed BSs using only omni or quasi-omni
beam patterns. As a prerequisite a clear understanding of the
mmWave system, channel model and basic signal processing
techniques is required to understand how machine learning
algorithms can be applied to mmWave systems as well as
understanding how MIMO is used mmWave [6]–[8]. The
authors in these papers introduce these fundamental concepts
starting from basic digital communication theory and how they
evolve into mmWave technology [9]. To optimize the machine
learning model, a basic knowledge about various optimization
algorithms is required as well as their mathematical formula-
tion and intuition about how they work. The authors mainly
focused on developing the intuition about these optimization
algorithms rather than going into rigorous formulation because
these optimization algorithms are based on empirical data and
heuristic techniques [10]–[13]. The authors go in depth about
these optimization algorithms and how they works starting
from the basic mathematical formulation. In addition how to
overcome some limitations of these optimization algorithms
provides a intuition about their mathematical reasoning [14].
The basic of cost function and initialization algorithm is also
a perquisite for understanding, how optimizing these aspects
increases the system performance [15].

III. DATASET

The data set used here was obtained from previous research
works which focused on a DeepMIMO data set generation
framework. The authors of the paper used RemcomWireless
InSite to get accurate ray-tracing data to generate the chan-
nel matrix of MIMO communication system. The data set
generation framework provides the facility to change various
parameters of the model like number of active BSs, number of
active users, number of BS antennas, antenna spacing, system
bandwidth, number of OFDM sub-carriers, OFDM sampling
factor, OFDM limit, number of paths etc. The dataset was
generated based on the framework for an outdoor environment
[16]. The dataset is open source and a couple of scenarios was
provided, from which O1 scenario was used in this research
[17].

Fig. 1. O1 scenario(top view) [17]

Fig. 2. O1 scenario (bird’s eye view) [17]

The ‘O1’ ray-tracing scenario is an outdoor scenario of two
streets and one intersection with the top-view and the bird-
view shown in fig. 1 and fig. 2 . The main street (the horizontal
one) is 600 m long and 40 m wide, and the second street (the
vertical one) is 440 m long and 40 m wide. The operating
frequency is 60 GHz.

IV. METHODOLOGIES

A. Coordinated Beamforming

In coordinated beamforming, a single user is served by
multiple base stations as shown in fig. 3. The base stations
are connected to a central hub where processing occurs. As
mmWave system works on high frequency range, the operating
wavelength shrinks. As a result, the antenna size in mmWave
communication is significantly small compared to the earlier
generation of wireless technology.

Fig. 3. Coordinated beamforming architecture

The base stations are connected to central hub via optical
fiber to make sure no interruption of communication takes
place between the base stations and the central hub. The
signals coming from all these base station adds in such a way
that the user will always get a reliable connection. The training
overhead is really large as all these base stations need to work
in synchronization.

B. System Model

The ML(Machine Learning) model is shown in the fig. 4
.The pilot sequence received by omni directional antenna is
fed to a dense neural network.



Fig. 4. System model

The neural network consists of input normalization layer,
followed by a fully connected and dropout layer. The fully
connected and dropout layer is repeated a couple of times
depending on how deep the neural network is. In this paper,
that stage was repeated 4 times. The received signals by the
base stations are represented by romni

k,n , where the superscript
signifies omnidirectional antennas were used to receive the
pilot sequences and k represents kth OFDM subcarrier, n
denotes the sequence was received by nth antenna of the base
station. There are total N base stations in the system.

The output of the neural network R̂n are the beamforming
vectors which determines the direction of the beam. The
channel is considered a block fading which stays constant over
the channel coherence time Tc.

V. INITIALIZER ALGORITHMS

If the weights of a ML model are initialized with all zeros, it
leads to a problem called symmetry breaking problem. When
this happens all weights will get the same update. This reduces
the degrees of freedom of the weight updates. Same thing will
happen if all the weights are initialized to the same value. This
kind of initialization halts the learning process completely and
results in a poor performance. Initializing the weights to a
really small value results in vanishing gradient problem. The
key point is that the calculated partial derivatives are used to
compute the gradient. Depending on the value of the gradients
defines how much the network will learn during the training, if
the gradients are very small or zero, no training can take place,
leading to poor predictive performance. For a shallow network
with only a few layers that use these activation’s, this isn’t a
big problem. However, more layers can cause the gradient to
be too small for training to work effectively. On the other end
of the spectrum, if the weights are initialized to a very large
value, it can result in an issue known as exploding gradient.
The exploding gradient problem is caused by the same reason

that caused the vanishing gradient problem. Large erroneous
gradients build and result in very large updates to the neural
network model weights during training, which is known as
exploding gradients.

A couple of key points to avoid the above mentioned issues:-
1) Weights should not be initialised with zero or the same

value.
2) It’s possible to break the symmetry by initializing the

weight randomly and keep the bias constant.
3) Weights should not be initialised with large value.
4) There should be some kind of mechanism like gradient

clipping to reduce the gradient if the gradients start to
get really large.

Fig. 5. Effect of gradient clipping

As seen from the fig. 5, gradient clipping can reduce the
problem with exploding gradient and can find a local minima.

Another option is to use values from a random normal
distribution to start the weights. It is possible to establish the
weight with a defined range by setting the mean and standard
deviation using the normal distribution. Setting the mean to
zero and the standard deviation to one is an example.

This approach randomizes all weights, which is much
preferable than setting a static value.Due to the random nature



, the model can have a higher chance of starting near a local
minima, most importantly this approach erases the symmetry
problem.Also, the normal distribution have some nice math-
ematical properties which makes it an ideal choice.Its also
possible to sample from other gaussian distribution with mean
not at zero and variance different from one . But that can make
the model unstable as weights can be set at really large values
which can result in exploding gradient problem.So, if that
approach is used there has to be a normalization layer which
restrict the values from 0 to 1.That way, it is possible to avoid
exploding gradient problem. There are many distributions,
but in practice the normal distribution is used the most.Fig.
6 shows a normal distribution where numbers are randomly
sampled.

Fig. 6. Normal distribution

A better way to initialize the parameters in a neural network
is to control the variance of the output. Xavier initialization
[15] is the technique that initializes the weights in a way
that the output produced by the neurons all follow the same
distribution.The idea behind the Xavier initialization can be
summarized into two key points : -

1) The mean of the activations should be zero.
2) The variance of the activations should stay the same

across every layer.
Two variants of Xavier initialization are Xavier uniform

initialization and Xavier normal initialization.
Although its a uniform distribution it’s performance is

relatively good compared to random uniform distribution.

Wij ∼ U

[
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k
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]
(1)

Eq.1 represents the Xavier uniform distribution where U
is the uniform distribution in the interval ( 1√

k
, 1√

k
) and k

is the size of the previous layer (the number of columns
of W).The following equation represents a more generalized
version,which is called normalized initialization.
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Therefore, using this approach, samples are drawn from a
normal distribution, where the normal distribution is described
by the above equations.

Fig. 7. Xavier uniform distribution

The following equation shows xavier random distribution
meaning samples are drawn from a normal gaussian distribu-
tion, where the normal distribution is described by the above
equation.

W ∼ N
(
0,

2

k[l−1] + k[l]

)
(3)

Xavier almost always works better compared to other ini-
tialization methods. But depending on the particular problem
other initialization methods can be chosen.

VI. SIMULATION RESULTS

The simulation was done to observe the effect of how
different initialization affects the system performance. The
main goal is to get the maximum effective achievable rate
with less percentage of the dataset.Genie-Aided performance
is not possible in practical scenarios, as it would require the
perfect channel knowledge, but is used as a benchmark. ML
model parameters used during the simulation are shown in
Table I.

TABLE I
PARAMETERS OF INITIALIZATION METHODS SIMULATION

Parameter Name Value
Number of hidden layers 8

Input shape (724, 256)
Output shape (724, 2048)

Activation function reLU
Number of epoch 10

Batch size 100



Fig. 8. Initializer comparison plot

Simulation result for different initialization and the com-
parison between different initializations is illustrated in this
section. The output of the simulation reflects the intuition
developed in the preceding sections. The results of deep learn-
ing coordinated beamforming will be compared to baseline
coordinated beamforming, which is based on traditional code
books.

Initializing weights to zero results in really poor perfor-
mance. The effective achievable rate of deep learning based
coordinated beamforming is nowhere near the baseline coor-
dinated beamforming irrespective of the data set size. This
happens due to the symmetry breaking problem.

In case of constant weight initialization, all the weights are
given constant value. This constant value can be any random
number, in this simulation the constant number was taken
as 1. From fig. 8 it’s apparent that this initialization method
has the same problem as zeros initialization method which
is reflected in the plot. But for really small percentage of the
data set this actually performs better than baseline coordinated
beamforming. But then its start decreasing as the percentage
of dataset increases.

Compared to constant weight initialization, initializing
weights with random numbers increase the system perfor-
mance by a significant amount. There is a slight increase
in performance for random normal initialization compared to
random uniform initialization. This randomness of initializa-
tion gives a large degree of freedom for the weights and
biases of the system. As for random normal initialization the
performance stays constant for any percentage of the data set
size.

Xavier’s initialization algorithms shows the best perfor-
mance compared to other initialization methods especially
xavier normal initialization. They reach the peak value of
effective achievable rate with data set size as low as 5%. We
know that Xavier intialization tries to make the variance of the
outputs of a layer to be equal to the variance of its inputs. In

case of Xavier uniform initialization it combines the benefit
of uniform initialization and Xavier’s method . Though it dips
by a small amount at 5% data set. For this reason, it is inferior
to Xavier normal distribution . But it can be concluded that
it is better than baseline coordinated beamforming and close
to the genie-aided beamforming.Therefore, Xavier normal
initialization will result in the most optimised model and
will reduce the computational complexity as well as produce
the best performance. The reason behind Xavier initialization
method to perform this well is it’s inherent nature to keep the
variance same. The variance remains the same after each layer
is passed, so when doing the feed forward algorithm after each
layer the variance will remain unchanged.

VII. FUTURE WORK

This research work only explored the performance of the
system for different initialization algorithms. By changing the
number of neurons in each layer, number of epochs, learning
rate further investigation can be done to see the effects of the
changes on the system performance. Also, the analysis has
been done for line of sight (LOS) environment, it can also be
done under non line of sight (NLOS) environment. Another
scope for future work is trying out different machine learning
architectures like convolutional neural networks, recurrent
networks and analyze how the system performance changes.

VIII. CONCLUSION

In this paper, we explored a deep learning based approach to
predict beamforming vectors in mmWave system, specifically
for coordinated beamforming. By analyzing different initial-
ization algorithms, it was found that Xavier normal initializer
algorithm provides the best effective achievable rate for the
least percentage of data.It is also apparent, its performance
is better than traditional coordinated beamforming. Xavier
Uniform initializer also performs relatively well, but zero
initialization and constant initialization results in really poor
performance.
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